

Design of Reconfigurable 12~14-bit Hybrid SAR-SS Analog to Digital Converter with SS Bit Shifting Method Cheol-Woo Moon, Je-I Yang, Kwang-Sub Yoon

Department of Electronic Engineering, INHA University

Introduction

This paper proposes a SAR-SS hybrid ADC structure that can reconfigure resolution for a bio-signal processing system used in wearable devices. The SAR ADC is placed in the MSB 8-10 bits, and the SS ADC is placed in the LSB 4 bits to implement a total resolution of 12, 13, 14 bits, and resolution can be reconfigured by an external signal (C1, C0) using a Bit Shifting method.

Fig. 1. Block diagram of the proposed 11-14 SAR/SS ADC

Fig. 2. Proposed ADC Layout

Fig. 3. (a)DNL (b)INL

Fig 4. Power Consumption

Table 1. Chip Measurement Result

Parameter	This work							
Process	28nm							
Architecture	SAR-SS							
Supply Voltage [V]	1							
Resolution [bit]	12	13	14					
SNDR [dB]	66.2	70.01	72.5					
ENoB [bit]	10.7	11.3	11.7					
Sampling rate [S/s]	384 k	370k	357k					

signals.

 Table 2. Resolution of SAR Logic and Total ADC

C0,C1	SAR bit	Total bit	Q5	Q4	Q3	Q2	Q1	Q0
00	8	12	SS3	SS2	SS1	SS0	VSS	VSS
10	9	13	VSS	SS3	SS2	SS1	SS0	VSS
11	10	14	VSS	VSS	SS3	SS2	SS1	SS0

***C1, C0 is resolution control signal.**

SS3

Circuit is designed reconfigurable in 12,13,14 bits. The SAR ADC is designed to be reconfigurable from 8 to 10 bits, and the SS ADC is fixed at 4 bits. This ADC is used the bit shifting method. The proposed ADC uses a CMOS 28nm 1-poly 8-metal process, and the layout area is 1180um × 550um, Supply voltage is 1V.

MPW and Cadence tools were supported by IDEC. This achievement is conducted with the support of the Korea Research Foundation funded by the government(No. 2021R1F1A1049023).

